

What is a wicking bed?

'The wicking bed system is a way of growing plants in which water wicks up from an underground water reservoir.

The major advantage is a significant increase in production while water use has been shown to be reduced by up to 50% of conventional practice.'

Colin Austin (waterright.com.au)

Key design elements

Adapted pre-fabricated beds

he.net.au/homegrown_home.html

Self-watering pots

Second hand containers

Milk bottles

Bath tubs

IBC cubes cut in half

Waterright shadecloth design

waterright.com.au

waterright.com.au

waterright.com.au

Building a shade cloth bed

Open wicking beds

Open wicking bed in poly tunnel

Experiments

Water holding capacity

Capillary rise

Wicking beds – Spinach, lettuce

Small wicking beds

Water (H₂O)

- Polar molecule
- Cohesion
- Adhesion

Capillary rise

Capillary rise

Capillary rise

- Fine materials had greatest rise
- Coarse materials had lowest rise
- Scoria and river gravel had very low rise
- Cocopeat was hydrophobic

Wicking beds – Lettuce

Soil moisture at 150mm

- Constant soil moisture with WaterUps (with sand) and cocopeat mix
- Driest soil with gravel reservoir and potting mix

Average tensiometer readings

Plant weight

Spinach

- Greatest weight with cocopeat and sand reservoirs
- Lowest weight with potting mix
- Close correlation between weight and water used

Lettuce

- No significant differences between treatments
- Probably enough water without needing much from reservoir

What do these experiments tell us?

- Capillary rise was greater with fine materials than coarse materials
- Soil moisture was lowest with gravel
- Soil above gravel reservoir dried while water remained in reservoir

- Don't use gravel it doesn't work well
 - only shallow reservoir
 - water more often
- Don't use scoria it won't work at all

What do these experiments tell us?

- Best soil moisture was with cocopeat mix reservoir and Waterups with sand wicks
- Waterups with sand wicks was better than just sand

- Probably due to lots of free water combined with good wicking ability
- Reservoir design with large voids for water should be good

Beds with sand wicks

Beds with sand wicks

How often do you need to add water?

- Seedlings watered for first five days only
- Spinach watered 28 and 42 days after transplant
- Lettuce watered 36 and 46 days after transplant

Table 37 - Mean number of days after transplant for each treatment before soil water tension dropped below -20kPa

Treatment	Days after transplant	
	WBT1	WBT2
cocopeat	_1	-
gravel	32	31
sand.cp	37	35
sand.pm	44	32
WaterUps®2	35	-

(1)one cocopeat bed did drop below -20kPa on day 44 but has been excluded from these results because it did not rehydrate after the reservoir was refilled

⁽²⁾The WaterUps® treatment used medium grade perlite as the wicking medium in WBT1 and sand in WBT2

